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Abstract
Photodetachment cross sections of the He− 1s2s2p 4Po metastable state in the
region of the 1s threshold (38–52 eV) have been calculated using a modified R-
matrix method based on a B-spline representation of the scattering orbitals. An
accurate representation of initial state and target state wavefunctions has been
obtained using a basis of non-orthogonal orbitals. The 17 bound (1s2l, 1s3l)
and autoionizing (2l2l ′, 2l3l ′) states of He have been included in the close-
coupling (CC) expansion. The convergence of the CC expansion has been
checked by inclusion of additional 1s4l, 1s5l and 3l3l ′ target states. Close
agreement was found with recent high-resolution K-shell photodetachment
measurements of He− giving rise to He+ ions (Berrah N, Bozek J D, Turri G,
Akerman G, Rude B, Zhou H L and Manson S T 2002 Phys. Rev. Lett. 88 93001),
except for the threshold maximum above the first 1s detachment threshold
2s2p 3Po at 38.88 eV, where the theoretical cross section is a factor of two
larger than experiment. Our results show 1s photodetachment cross sections
with numerous structures which have been analysed in detail. A set of triply
excited resonances is also found, and their energy positions, widths and decay
branching ratios are presented.

1. Introduction

The structure of a negative ion is intrinsically different from that of an atom or a positive ion
due to the more extensive screening of the nucleus by the electrons. This causes the inter-
electronic interactions to become relatively more important, and the enhanced correlation can
dominate the structure and dynamics of these weakly bound systems. The photodetachment
process of negative ions stands out as an extremely sensitive probe of negative-ion properties
and provides a sensitive test of the ability of theory to go beyond the independent-electron
model. Up to recent times, most of the theoretical results and experimental data were related
to photodetachment processes in which only one or two outer subshells are involved (see, for
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example, Buckman and Clark 1994, Ivanov 1999), whereas inner-shell photodetachment has
been largely unexplored.

The situation changed over the last few years when several calculations (Amusia et al1990,
Ivanov et al 1998, Xi and Froese Fischer 1999, Zhou et al 2001a) predicted strong many-body
effects in the photodetachment of deep inner shells. This encouraged experimentalists to
extend measurements to higher energies. Besides, the advent of third-generation synchrotron
light sources, with higher flux, brightness and resolution, made it possible to investigate
experimentally inner-shell processes in tenuous negative ion targets. As a result, measurements
of inner-shell photodetachment have been made for several elements: Li− (Kjeldsen et al
2001, Berrah et al 2001), Na− (Covington et al 2001) and He− (Berrah et al 2002). The
measurements displayed dramatic structures differing substantially from the corresponding
processes in neutral atoms and positive ions.

This difference might not be expected at first since deep inner shells of negative ions
are essentially unaffected by the very diffuse cloud of outer-shell electrons, and the static
properties of these deep inner-shell electrons are very close to those of the corresponding
positive ions. However, this is not necessarily true for dynamic properties, especially electron
detachment, where an inner-shell electron exiting the system must pass through the diffuse
cloud of outer-shell electrons, resulting in additional resonance structure. As a whole, there
is a good qualitative agreement between experiment and R-matrix calculations for the 1s
photodetachment in He− and Li− (Berrah et al 2001, Zhou et al 2001b), but the calculated
cross section in the first 1s threshold exceeds measurement by more than a factor of two for both
He− and Li−. The narrow resonance structure in the higher-energy region was not analysed in
detail.

In this paper, we present new R-matrix calculations for photodetachmentof the 1s2s2p 4Po

state of He− in the high-energy region, in order to resolve the existing discrepancies between
experiment and theory, as well as considerable discrepancies between different calculations.
The first theoretical study of photodetachment of He− in the 1s threshold region was undertaken
using the multiconfiguration Hartree–Fock (MCHF) wavefunctions for discrete states and a
continuum configuration-interaction (CI) method for resonances (Kim et al 1997). Coupling
between open channels was not, however, included. A more rigorous and detailed investigation
of photodetachment of He− was performed by Xi and Froese Fischer (1996, 1999) using a
new method based on direct solution of the close-coupling (CC) equations using a B-spline
basis. More recently, the photodetachment cross section of He− in the region of the 1s
threshold has been calculated by Zhou et al (2001a) using a standard R-matrix code with
an enhanced asymptotic treatment, modified to handle a negative-ion system. The results
show a 1s photodetachment cross section with numerous structures which were ascribed to
the dominance of correlation of both initial and final states of negative ions. Comparison with
previous calculations shows that while there are some areas of excellent agreement, overall
there are serious discrepancies. To resolve these discrepancies and discrepancies between
theory and experiment is the main motivation of the present work. Note also that very recent
calculations of Sanz-Vicario and Lindroth (2002), based on the complex rotation CI method,
confirm the main features of the R-matrix calculations of Zhou et al (2001a).

In order to calculate photodetachment cross sections, we used the new R-matrix program
(Zatsarinny and Froese Fischer 2000,Zatsarinny and Tayal 2001a,2001b), which has some new
features compared to standard R-matrix treatment. First, emphasis is placed on the accuracy
of target wavefunctions by using non-orthogonal orbitals; these are optimized for each atomic
state separately. For the description of continuum orbitals, we use a B-spline basis, and do
not impose any orthogonality constraints between continuum and spectroscopic, or correlated,
atomic orbitals. Thus, in principle, we do not need any (N + 1)-electron terms in the CC
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expansion to compensate for the artificial orthogonality constraints on the continuum orbitals,
which are imposed in the standard R-matrix treatment. That simplifies the calculations and
leads to a substantial reduction in the pseudo-resonance structure at higher energies.

In this paper, we present partial and total cross sections for the photodetachment of the
He− 1s2s2p 4Po metastable state in the 1s threshold region (photon energy region from 38.8 to
52 eV). The calculations have been done in the LS coupling scheme in two approximations,
with the R-matrix CC expansion consisting of 17 and 31 target states. This allows us to explore
the convergence of the CC expansion. We also intend to provide a more complete study of the
resonance structure.

2. Computational details

2.1. Target wavefunctions

The accurate representation of the target wavefunctions is an important component of any
reliable scattering calculation. The He-like wavefunctions are well studied in the literature
and, in principle, can be obtained with extremely high accuracy. However, in the scattering
calculations, when the same orbital set is used to generate all target wavefunctions as well
as the initial state wavefunction, the accurate generation even of relatively simple He-like
wavefunctions may need extremely large CI expansions. In this case, special optimization
algorithms should be used to produce the best average result with a reasonable number of
configuration state functions. For example, Xi and Froese Fischer (1999) generated orbitals
with n � 5 from consideration of the 1snl bound states. Additional correlation orbitals were
optimized so that the best average results could be obtained for the initial state, and target
autoionizing states, of interest. Specifically, orbitals with n = 6, 7, 8 were optimized for the
2s2p 3P state, and orbitals with n = 9, 10 were optimized for the initial state. This procedure
leads to accurate target states but with extremely large configuration expansions. A similar
procedure was also used by Zhou et al (2001a) but with a much more limited set of correlated
orbitals to ensure that the R-matrix calculation did not become too large.

In order to obtain an adequate representation of the target states in the present work, we
used an alternative method for generating radial orbitals, based on a detailed examination of the
different correlation effects, and inclusion of the main correlation with specific configurations,
or with specific correlated orbitals. This approach has no simple systematic procedure,
but can lead to rather accurate results with a relatively small number of configurations.
In this respect, use of the non-orthogonal orbitals can provide a more flexible procedure.
The general formalism does not require orthogonality of one-electron radial functions but
only the orthogonality of total atomic wavefunctions. As we will see below, use of non-
orthogonal orbitals allows us to include correlation with a minimum number of configurations
and correlated orbitals. This approach has been successfully applied to the generation of target
states in lithium (Zatsarinny and Froese Fischer 2000), oxygen (Zatsarinny and Tayal 2001a)
and sulfur (Zatsarinny and Tayal 2001b), where it was very effective for the description of
open-shell atoms. In general, the non-orthogonal technique,compared to the orthogonal orbital
technique, leads to a much more time-consuming calculation of matrix elements but provides
much larger flexibility in the choice of target wavefunctions which now can be obtained from
independent calculations.

The bound 1s2l and 1s3l target states of He have been obtained from a set of separate
independent MCHF calculations, similar to the case of Li+ target states used by Zatsarinny
and Froese Fischer (2000). This leads to non-orthogonal one-electron orbitals for different
states but gives the minimum number of configuration state functions required to achieve the
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same level of accuracy for target wavefunctions as in Xi and Froese Fischer (1999). The
n = 4, 5 bound orbitals were obtained from the HF 1snl 3L calculations with a hydrogenic
1s orbital. The next step was to obtain wavefunctions for autoionizing target states. This
was done in the independent calculations as follows. We start from configuration expansions
based on hydrogenic n = 2–5 orbitals as the initial approximation. Then for each term we
generated the 6s–6g correlated orbitals optimized on the corresponding lowest autoionizing
state. Examples are the 2s2p state for the 3Po term or 2p2 for the 3P term. If the results
for some states were not converged, we additionally generated the 7s–7g correlated orbitals
optimized on this specific state. For example, we used additional orbitals for the 2p3p 3P state.
Finally, the target wavefunctions for a given term were obtained from CI calculations where a
final configuration expansion was combined with corresponding configuration expansions for
bound and autoionizing states. This guarantees the orthogonality of target wavefunctions. All
final configuration expansions were restricted to configurations with weights c > 0.0001.

Resulting energies of the target states are compared in table 1 with energies obtained in the
calculations of Xi and Froese Fischer (1999) and Zhou et al (2001a), as well as with the most
accurate energies which we could find in the literature for these states. The achieved accuracy
is of the order of 10−5 au for bound states, and of the order of 10−3 au for the autoionizing states.
Comparing the energies of autoionizing states, we should take into account the fact that the
accurate results of Lindroth (1994) and Ho (1993) also contain the shift due to interaction with
the continuum, which can achieve the value of 10−3 au. The achieved accuracy of total energies
is comparable to the accuracy obtained by Xi and Froese Fischer (1999). However, we used
a far smaller configuration expansion which consisted of 30–70 configuration state functions,
depending on the term under consideration. The reduction of the configuration expansion has
been obtained at the price of a large number of different one-electron orbitals (98 different
orbitals were used for representing all target states in the present calculations). On the other
hand, the computational time depends mainly on the size of the configuration expansion, and
the large number of one-electron functions does not complicate the calculations.

Comparison of oscillator strengths for transitions between target states can provide an
additional test of the reliability of the present wavefunctions. For transitions between bound
states we obtained very close agreement (within 1%) between length and velocity forms,
and with the results of Chen (1994). The calculations of Chen (1994) were carried out with
extensive B-spline expansions and should be considered the most accurate to date. We also
obtained good agreement with the results of Zhou et al (2001a) for transitions to autoionizing
states. Note, however, that for some transitions with small f -values (<0.01) the length and
velocity forms agree closely in both calculations,but the oscillator strengths differ considerably,
especially in the case of transitions to the 2s2p, 2s3p, 2p3s 3Po autoionizing states. On the
basis of the above comparison of target energies and oscillator strengths, we can conclude that
our wavefunctions include the dominant correlation and provide a good representation of the
target states in the R-matrix calculations.

The initial 1s2s2p 4Po state was obtained in the independent MCHF calculations, using a
straightforward active-set approach, and generating all possible configuration state functions
from active set orbitals with n = 1–5. As can be seen in table 1, the resulting total energy
is close to the accurate results of Kristensen et al (1997). It should be noted that the 2s and
2p orbitals here differ considerably from the corresponding orbitals in the target states. This
indicates large relaxation effects during the 1s photodetachment, which are directly included
in the present calculations. The small residual difference in excitation energies, which affects
the position of resonances, can be removed by using the exact or experimental energies for the
initial and target states.
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Table 1. Energy (in au) of target states and their relative value (in eV) to the 1s2s2p 4P initial state
(1 au = 27.207 652 eV is used to convert au to eV).

Xi and Froese Fischer Zhou et al Relative
Target Present (1999) (2001) Others value (eV)

1s2s2p 4P −2.178 015 −2.178 050 −2.177 933 −2.178 073a 0.0

1s2s 3S −2.175 225 −2.175 202 −2.175 117 −2.175 229b 0.076
1s2p 3Po −2.133 139 −2.133 157 −2.132 969 −2.133 164 1.221
1s3s 3S −2.068 684 −2.068 683 −2.068 656 −2.068 689 2.974
1s3p 3Po −2.058 071 −2.058 058 −2.058 019 −2.058 081 3.263
1s3d 3D −2.055 634 −2.055 636 −2.055 604 −2.055 636 3.330

2s2p 3Po −0.760 860 −0.760 458 −0.758 251 −0.760 492c 38.564
2p2 3P −0.710 465 −0.710 492 −0.708 737 −0.710 500d 39.930
2s3s 3S −0.602 578 −0.602 486 −0.600 375 −0.602 578d 42.864
2s3p 3Po −0.584 724 −0.584 580 −0.582 778 −0.584 672c 43.349
2p3p 3D −0.583 781 −0.583 669 −0.580 561 −0.583 784c 43.377
2p3s 3Po −0.578 889 −0.578 990 −0.576 099 −0.579 031c 43.512
2p3p 3P −0.567 799 −0.567 729 −0.565 061 −0.567 81d 43.810
2p3d 3Fo −0.565 141 −0.565 928 −0.560 656 −0.566 20d 43.879
2s3d 3D −0.560 630 −0.560 198 −0.556 172 −0.560 687c 44.006
2p3p 3S −0.559 720 −0.558 841 −0.557 148 −0.559 747d 44.035
2p3d 3Do −0.559 312 −0.559 30d 44.044
2p3d 3Po −0.548 681 −0.548 813 −0.545 521 −0.548 844c 44.329

1s4s 3S −2.036 510 −2.036 512b 3.852
1s4p 3Po −2.032 313 −2.032 324 3.965
1s4d 3D −2.031 287 −2.031 289 3.994
1s5s 3S −2.022 617 −2.022 619 4.230
1s5p 3Po −2.020 544 −2.020 551 4.286
1s5d 3D −2.020 020 −2.020 021 4.300

3s3p 3Po −0.351 137 −0.350 378d 49.727
3p2 3P −0.338 106 −0.336 088 50.116
3p3d 3Fo −0.331 526 −0.331 64 50.237
3s3d 3D −0.326 491 −0.325 331 50.409
3p3d 3Do −0.316 186 −0.315 575 50.674
3d2 3F −0.310 467 −0.310 725 50.806
3p3d 3Po −0.308 994 −0.309 380 50.843
3d2 3P −0.290 460 −0.291 158 51.338

a Kristensen et al (1997), Bylicki and Pestka (1996).
b Kono and Hattori (1984).
c Ho (1993).
d Lindroth (1994).

2.2. Photodetachment calculations

Photodetachment calculations have been carried out using the new R-matrix code, in which
non-orthogonal orbitals are used for describing both the target states and the R-matrix
continuum basis functions. In particular, a B-spline basis is used for the description of
continuum functions in the internal region. The details of the method have been given by
Zatsarinny and Froese Fischer (2000) and by Zatsarinny and Tayal (2001a, 2001b). Here, we
give a brief outline.

As in the standard R-matrix method (Burke and Berrington 1993), the wavefunction
describing the total (N + 1)-electron system in the internal region with 0 < r < a is expanded
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in terms of energy-independent functions

�k = A
∑

i j

ai jk�̄i u j(r) +
∑

j

b jkφ j (1)

where �̄i are channel functions formed from the N-electron target states �i (physical and
pseudo) included in the close coupling expansion, u j are the radial basis functions describing
the motion of the scattering electron, and φ j are (N + 1)-electron bound configurations which
allow for short-range correlation effect and completeness. In our implementation of the R-
matrix method, the radial functions u j are expanded in the spline basis as

u j (r) =
∑

i

āi j Bi(r), (2)

where the coefficients āi j (which now replace the coefficients ai jk in equation (1)) and
coefficients b jk are found by diagonalizing the (N + 1)-electron Hamiltonian inside the R-
matrix box of radius a. Use of the B-spline basis leads to a generalized eigenvalue problem
of the form

Hc = ESc, (3)

where S is the overlap matrix, which in the case of the usual orthogonal conditions on scattering
orbitals reduces to the banded matrix, consisting of overlaps between individual B-splines, but
in the more general case of non-orthogonalorbitals has more complicated structure (Zatsarinny
and Froese Fischer 2000). For an accurate determination of the electron flux through the
boundary, we do not impose any boundary conditions on the u j functions at the outer edge
of the box. In order to obtain the Hermitian interaction matrix in the internal region, we add
the Bloch operator to the Hamiltonian (Burke and Berrington 1993). The amplitudes of the
wavefunctions at the boundary which are needed for construction of the R-matrix are simply
given by the coefficient of the last spline, the only spline which has nonzero value at the
boundary.

The choice of B-splines as basis functions has certain advantages. The B-splines are bell-
shaped piecewise polynomial functions of order ks (degree ks −1) and defined by a given set of
points in some finite radial interval. They were introduced into atomic structure calculations
about ten years ago and have been widely used due to their excellent numerical approximation
properties (for reference, see the recent review by Bachau et al (2001)). The important property
of B-splines is that they form an effectively complete basis on the interval spanned by the knot
sequence. The completeness of the B-spline basis ensures that no Buttle correction to the
R-matrix elements is required.

R-matrix calculations were carried out with the following parameters. The R-matrix
radius a = 100 au is chosen to ensure that the bound orbitals approach zero at the boundary.
The number of continuum basis functions u j (r) for each orbital angular momentum was 150.
This number of continuum basis functions is considerably larger than in standard R-matrix
calculations. In the present approach, this number is defined by the number of B-splines, which
in turn is defined by the choice of grid. It is necessary to use the grid with maximum step value
of 1/k, where k is the maximum linear momentum of the incident electron; otherwise, the B-
spline basis inadequately describes the oscillating behaviour of the wavefunction. Scattering
parameters are then found by matching the inner solution at r = a to asymptotic solutions in the
outer region. The ASYPCK program (Crees 1980) has been employed to find the asymptotic
solutions. In the present scattering calculations,we do not impose any orthogonality conditions
on the scattering orbitals, and that allows us to avoid the introduction of the additional (N + 1)-
electron terms in the CC expansion which are usually used to compensate the orthogonality
constraints on the scattering orbitals.
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Since the initial state is He− 1s2s2p 4Po, the final continuum states, by dipole selection
rules, must be 4S, 4P, or 4D. The calculations of dipole matrices between the initial state and
final continuum functions have been done on the basis of non-orthogonal orbitals with full
inclusion of relaxation effects (Zatsarinny 1996). In the first step, the CC expansion included
17 target states (the 1s2l and 1s3l bound states and all 2l2l ′ and 2l3l ′ autoionizing states of
He—approximation 17CC). This is almost the same CC expansion as in previous calculations
by Xi and Froese Fischer (1999) and Zhou et al (2001a), except that we excluded the 2s4s 3S
state and included the 2p3d 3Do state. We regard the inclusion of all 2l3l ′ states as more
consistent. In the second step, in order to explore the convergence of the CC expansion, we
additionally included the 1s4l, 1s5l and 3l3l ′ target states—approximation 31CC. The number
of target states in this case is equal to 31, with the number of different scattering channels
equal to 24, 32 and 60 for 4Se, 4Pe or 4De partial waves, respectively.

2.3. Resonance analysis

For detection and parametrization of resonances we use the time-delay matrix method. This
method for analysis of resonances has been proposed by Smith (1960), and is based on the
introduction of a time-delay matrix Q, which is formed from the scattering matrix S and the
time operator −i d/dE :

Q = −iS∗ dS

dE
. (4)

Smith showed that the largest eigenvalue of the Q-matrix, q , represents the longest time-delay
of the incident particle. He further showed that the probability of decay into a particular
channel, the branching ratio, is given by the square of the corresponding component of the
eigenvector associated with q . Close to resonance, the time-delay has a Lorentzian form given
by

q(E) = �

(E − E0)2 + (�/2)2
, (5)

where E is the incoming projectile energy, E0 is the position and � is the width of the
resonance. At resonance (E − E0), the time-decay function has a maximum with, in atomic
units, height = 4/width.

The computation can be split into two parts. The first part calculates the time-delay
as a function of energy, and the second locates and fits resonances using equation (5). For
determination of the Q matrix, we used the energy derivative of S found numerically with
energy step 10−6 Ryd.

The resonance analysis based on the time-delay matrix method is seldom used in
the photoionization or electron-scattering calculations. This method requires additional
calculation of the scattering matrix, which can considerably increase the computational time
compared to direct fitting of photoionization cross sections according to known resonant cross
section dependences. On the other hand, the time-delay matrix method directly provides the
partial and total width, even in the case of complicated structure due to overlapping resonances,
where the fitting of cross sections is problematic. The same concerns resonances located close
to excitation thresholds. The 4S partial photodetachment cross section, discussed in the next
section, is one particular example in this respect.

3. Results and discussion

Photodetachment of the 1s2s2p 4Po metastable states, due to LS selection rules, leads to the
three final states with 4S, 4P and 4D terms. We first discuss the partial cross sections to the 4S, 4P
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Figure 1. Calculated photodetachment cross sections to the He− 4S final states. Solid curve,
present R-matrix results in the 17CC approximation; dashed curve, R-matrix calculations of Zhou
et al (2001a); dotted curve, complex scaled CI results of Sanz-Vicario and Lindroth (2002). The
vertical lines indicate the He excitation thresholds.

and 4D final states separately for more detailed comparison with other calculations. The partial
cross sections obtained in the 17-target-state approximation are presented in figures 1–3 for
the 4S, 4P and 4D terms, respectively. The comparison is given with the recent R-matrix
calculations of Zhou et al (2001a), and with complex-rotation calculations of Sanz-Vicario
and Lindroth (2002). We do not compare with a spline–Galerkin calculation of Xi and Froese
Fischer (1999). The detailed comparison has been carried out in the above-mentioned works
and it has been shown that, although the 4S and 4P partial cross sections of Xi and Froese Fischer
(1999) agreed with recent calculations, the dominant 4D partial cross section somehow seemed
incorrect. The photon energy in our calculations ranges from 38 to 44 eV. In the photon energy
region of the 1s photodetachment, the final target states include the doubly excited states of
neutral helium with n, n′ > 1. Direct photodetachment of the 1s electron leads only to the
2s2p 3Po target state, whereas other target states can be reached through the 1s photodetachment
plus target excitation. So, we can expect the largest cross section at the 2s2p 3Po threshold.
Besides, the 2s and 2p orbitals in the initial 1s2s2p 4Po state are much more diffuse than in
the doubly excited states of neutral helium. This can lead to large shake-up probabilities for
population of other 3Po states (2s3p, 2p3s, 2p3d, 3s3p). During 1s excitation, He− can also
reach triply excited states. The autoionization of these states leads to strong resonance structure
in the photodetachment cross sections.

3.1. 4S photodetachment cross section

The cross section to the final 4S state is shown in figure 1. In order to simplify the figures,
we present hereafter only the cross sections in the velocity form. The cross sections in the
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Figure 2. Photodetachment cross section, time-delay function and eigenphase sum for the 4S
partial wave in the region of the 4S(2) resonance.

velocity and length forms agree closely with each other, and the difference does not exceed
1% for all energies. We see rather good agreement between the different calculations, except
for the narrow resonance structure at higher energies. The first peak of the 4S cross section at
38.7 eV is the result of photodetachment to the (2s2p 3P)kp channel. As mentioned by Zhou
et al (2001a), this peak is not a resonance but threshold behaviour.

A complicated resonance structure is detected in the energy region 43–44 eV, close to the
position of the 2l3l ′ target states. All calculations show a narrow Feshbach resonance 2s3s4s
located just below the He 2s3s 3S threshold, but the position, and especially the width, differs
considerably in the different calculations. The comparison of positions and widths for some
well established resonances is given in table 2. Accurate values for the He excitation thresholds
are crucial for locating resonance positions, and the difference in the resonance positions is
mainly caused by differences in the target state energies. On the other hand, the large difference
in width for the lowest 2s3s4s resonance indicates the importance of correlation corrections.
Our calculations, and the R-matrix calculations by Zhou et al (2001a), include approximately
the same level of multichannel interaction, and differ mainly in the accuracy of the doubly
excited target state description. Accuracy of target state description obviously influences all
calculated parameters of quasibound states in He−.

The broad feature located around 43.3 eV is a matter of controversy. Zhou et al (2001a)
claim that this is not due to a resonance, but rather that the complicated behaviour of the 4S
cross section around 43.3 eV is most probably due to interchannel coupling effects, coupled
with the fact that photodetachmentcross sections rise from zero at threshold; this only gives the
appearance of resonances. According to the complex scaling calculations of Sanz-Vicario and
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Figure 3. Calculated photodetachment cross sections to the He− 4P final states. The notation is
the same as in figure 1.

Lindroth (2002), this peak is associated with a pole of the S-matrix, and the authors conclude
that it is a broad resonance. Our identification of resonances is based on the time-delay method
and the analysis of the eigenphase sum. These functions, along with the cross sections, are
presented in figure 2. We see that the eigenphase sum does not change by π in this region (as
well as in the region of the following narrow peaks at 43.37 eV), and the time-delay function
in this region does not exhibit a simple Lorentzian shape, as we have found in the case of other
resonances. Nevertheless, the total change of eigenphase in the region of the broad and narrow
maxima is close to π . The time-delay functions also can be considered as a broad Lorentzian
shape, perturbed by two excitation thresholds, 2s3p 3Po and 2p3p 3D. It is interesting to note
that the narrow maximum at 43.37 eV also exhibits a Lorentzian form, but with much smaller
width. We fitted both these maxima, and the corresponding data are presented in table 3 as
resonances 4S(2) and 4S(3). Our interpretation of this resonance structure, however, is not as
due to the overlap of two resonances, but as one broad resonance perturbed by the 2s3p 3Po and
2p3p 3D excitation thresholds. This causes an unusual resonance structure, with two peaks in
the photodetachment cross section,which cannot be fitted accurately to analytical forms widely
used in the analysis of resonance structure. An additional complication is due to the cusp near
the 2p3p 3D threshold. The above example shows the advantage of the time-delay matrix
method for the analysis of complicated structures. Note also that our width of the 4S(2) reso-
nance in table 3 is close to the value of 208 meV predicted by Brandefelt and Lindroth (2002).

The next prominent feature in the 4S cross section is observed at 44.017 eV. We identify this
as the 2p3d4p resonance. As seen from table 2, our position of this resonance agrees closely
with the results of the complex rotation calculations of Brandefelt and Lindroth (2002). How-
ever, the width of this resonance differs by a factor of two. This resonance is located toward the
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Table 2. Positions and widths of the He− resonances compared with those from other theoretical
calculations.

State Position (eV) Width (meV) Method Reference

2s2p2 4P 37.672 10.3 Complex-coordinate rotation Bylicki and Nicolaides (1995)
37.670 9.87 Saddle-point complex rotation Chung (1995)
37.669 9.85 B-spline CC, 17CC Xi and Froese Fischer (1999)
37.703 9.74 R-matrix, 17CC Zhou et al (2001a)
37.669 9.66 B-spline complex rotation Sanz-Vicario and Lindroth (2002)
37.692 10.2 B-spline R-matrix, 17CC Present
37.685 10.8 B-spline R-matrix, 31CC Present

2p3s3p 4P 43.353 12.6 B-spline CC, 17CC Xi and Froese Fischer (1999)
43.370 14.4 R-matrix, 17CC Zhou et al (2001a)
43.330 13.8 B-spline complex rotation Sanz-Vicario and Lindroth (2002)
43.336 13.6 B-spline R-matrix, 17CC Present
43.332 14.0 B-spline R-matrix, 31CC Present

3s3p2 4P 48.994 154 Saddle-point complex rotation Chung (2001)
48.997 141 B-spline R-matrix, 31CC Present

2s3s4s 4S 42.866 0.103 B-spline CC, 17CC Xi and Froese Fischer (1999)
42.919 0.120 R-matrix, 17CC Zhou et al (2001a)
42.864 0.350 B-spline complex rotation Brandefelt and Lindroth (2002)
42.860 0.544 Complex scaled CI Sanz-Vicario and Lindroth (2002)
42.862 0.168 B-spline R-matrix, 17CC Present
42.864 0.225 B-spline R-matrix, 31CC Present

2p3d4p 4S 44.002 8.06 B-spline complex rotation Brandefelt and Lindroth (2002)
44.017 3.31 B-spline R-matrix, 17CC Present
44.011 3.99 B-spline R-matrix, 31CC Present

2p3s3p 4D 42.985 34.3 Complex scaled CI Sanz-Vicario and Lindroth (2002)
42.981 33.8 B-spline R-matrix, 17CC Present
42.980 35.0 B-spline R-matrix, 31CC Present

end of the region covered by our target states, and therefore the accuracy of the CC calculations
in this region is not reliable. However, the extended 31CC calculation gives the width (see
table 2) which also differs considerably from the value of Brandefelt and Lindroth (2002).

3.2. 4P photodetachment cross section

The cross section to the final 4P state is presented in figure 3. The general profile of our cross
section agrees closely with the results of Zhou et al (2001a) and Sanz-Vicario and Lindroth
(2002). First, we examine the energy region below the opening of the 1s detachment threshold.
A strong Feshbach resonance is located here that dominates the spectrum. This resonance is
assigned to the lowest triply excited state, He− 2s2p2 4P, and well characterized by several
methods (see table 2). Our 17CC calculation gives a position which is ∼20 meV higher than
the results of the most recent calculations, and our width is ∼5% larger. Close agreement
of widths for the 2s2p2 4P resonance obtained from different calculations can lead to the
conclusion that the parameters of this triply excited state are defined quite accurately (Sanz-
Vicario and Lindroth 2002). However, our extended results, with the inclusion of additional
scattering channels, lead to further increasing of the widths, mainly due to the opening of
additional decay channels. This indicates the slow convergence of close coupling expansions
for resonance parameters that will be discussed latter.
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Table 3. Energy, width and decay mode for He− resonances obtained in the 31CC (first row) and
17CC (second row) approximations.

Resonance E (eV) W (meV) Decay mode (%)

4S(1) 42.864 0.275 51.3 2s2p 3Po 13.6 1s5s 3S 9.9 1s4s 3S
42.862 0.168 80.0 2s2p 3Po 13.4 1s3p 3Po

4S(2) 43.306 235 47.5 2p2 3P 40.1 2s2p 3Po

43.316 244 49.6 2p2 3P 38.5 2s2p 3Po

4S(3) 43.362 3.05 43.4 2s3p 3Po 31.3 2s2p 3Po

43.366 3.42 53.4 2s3p 3Po 40.7 2s2p 3Po

4S(4) 44.011 3.99 38.1 2s3s 3S 29.9 2s3p 3Po 15.4 2p3p 3D
44.017 3.31 36.6 2s3s 3S 29.9 2s3p 3Po 16.4 2p3p 3D

4S(5) 47.446 392 33.9 2p3p 3S 23.5 2s3s 3S 10.2 2s3p 3Po

4S(6) 48.753 341 26.3 2p3p 3S 24.8 2p3d 3Fo 24.1 2p3d 3Po

4P(1) 37.685 10.8 89.4 1s2p 3Po

37.692 10.2 95.0 1s2p 3Po

4P(2) 43.120 27.7 61.2 2s2p 3Po 32.0 2p2 3P
43.121 27.8 59.0 2s2p 3Po 33.4 2p2 3P

4P(3) 43.333 14.0 41.2 2s2p 3Po 46.6 2p2 3P
43.336 13.6 38.5 2s2p 3Po 49.4 2p2 3P

4P(4) 43.358 2.65 50.8 2s3p 3Po 26.4 2s2p 3Po 16.2 1s5p 3Po

43.361 3.42 53.4 2s3p 3Po 40.7 2s2p 3Po

4P(5) 48.997 141 31.1 2s3p 3Po 28.2 2s2p 3Po

4D(1) 42.980 35.0 59.7 2s3s 3S 30.2 2s2p 3Po

42.981 33.8 61.0 2s3s 3S 34.0 2s2p 3Po

4D(2) 43.353 0.0471 65.2 2s3s 3S 17.3 1s5p 3Po

43.354 1.527 67.3 2s3s 3S 25.4 2s2p 3Po

4D(3) 47.412 381 30.1 2p3d 3Po 13.9 2p3s 3Po 12.7 2p3p 3P
4D(4) 47.975 428 29.3 2p3p 3D 12.6 2p3s 3Po 11.5 2s3p 3Po

4D(5) 48.474 515 29.9 2p3p 3D 18.2 2p3s 3Po 12.2 2p3p 3P

The second feature in the 4P cross section is the strong threshold maximum due to opening
of the (2s2p 3P)kp channel. All calculations give very close results in this region (which is very
important in further comparison with experimental data). The same conclusion concerns the
next step-wise feature in the cross section at ∼40 eV. This structure is caused by opening of the
(2p2 3P)ks and (2p2 3P)kd channels, which describe 1s photodetachmentplus 2s–2p excitation.
At higher energies we observe rather strong resonance structure, presented in figure 2(b) on a
larger scale. The peak dominating this part of the spectrum is a strong Feshbach resonance at
43.336 eV with width 13.6 meV. As seen in table 2, all calculations report very similar results.
This resonance is strongly mixed, and we tentatively assign it as the 2p3s3p 4P resonance.
This resonance decays almost exclusively to the 2p2 3P and 2s2p 3P channels, see table 3.

Our cross section clearly shows two small peaks on the ‘wings’ of the dominant 2p3s3p
resonance. The time-decay and eigenphase analysis confirm that these peaks are in fact
resonances. The first resonance is located at 43.120 eV and has a rather large width of 27.8 meV.
This resonance correlates with the Feshbach resonance detected at 43.115 eV in the B-spline
complex rotation calculations of Sanz-Vicario and Lindroth (2002), although its strength is
so small that it is almost imperceptible. The second resonance is located between the He
2s3p 3Po and 2p3p 3D thresholds at 43.361 eV. This feature correlates well with the small
maximum at 43.360 eV in the cross section obtained by Sanz-Vicario and Lindroth (2002).
However, these authors do not identify this maximum with a resonance but rather a threshold
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maximum. It is interesting to note that the R-matrix calculation by Zhou et al (2001a) does
not predict any of the above resonances, and Sanz-Vicario and Lindroth (2002) concluded that
‘the method of complex scaling proves to be more resourceful to locate the resonances’. From
our point of view, the reason is simply that the present R-matrix calculations and complex
rotation calculations by Sanz-Vicario and Lindroth (2002) include the short-range correlation
to a larger extent than the R-matrix calculations of Zhou et al (2001a). In the R-matrix
calculations, short-range correlation comes from the target wavefunctions and the (N + 1)-
electron terms in the CC expansion (equation (1)). So incorporation of additional correlation
corrections through accurate target wavefunctions seems to be very important for accurately
predicting small resonance features. The last feature in the region of the 2l3l ′ target states is
observed near the 2p3p 3P threshold. According to our time-delay analysis, we identify this
structure as a cusp effect, whereas Zhou et al (2001a) suggested instead the existence of a
2s3p4s 4P resonance just below the 2p3p 3P threshold (the suggested assignment appears to
be in error because this resonance is located far above the 2s3p threshold and should therefore
be a 4s shape resonance).

3.3. 4D photodetachment cross section

Figure 4 shows the photodetachment cross section to the final 4D state. The first peak results
from the (2s2p 3P)kp channel and increases rapidly from threshold to a maximum of about
18.8 Mb. This value is slightly less than the value of 22 Mb from the R-matrix calculations of
Zhou et al (2001a), but as a whole the agreement between different calculations is satisfactory.
Between 43 and 44 eV, some structure in the 4D cross section exists. To understand the details,
the cross section in this region is presented in figure 4(b) in more detail. The dominant feature
in this energy region is a huge maximum of about 20 Mb at 42.981 eV, just above the 2s3s 3S
threshold. The major discrepancy between difference calculations arises from the interpretation
of this maximum. Zhou et al (2001a) reiterate that this is definitely not a resonance, but a
nonresonant transition, 1s2s2p 4Po–(2s3s 3S)kd 4D, starting at zero from threshold because it is
a photodetachment, and having its maximum several tenths of an electronvolt above threshold
owing to the d-wave angular momentum barrier. According to these authors, such a treatment
would also explain the fact that the main part of the 4D cross section of ∼12 Mb is contained in
the partial (2s3s 3S)kd cross section. A large contribution from the (2s2p 3P)kp partial wave,
∼8 Mb, is explained by the significant effect of interchannel coupling within the 4D manifold.
On the other hand, the complex rotation method of Sanz-Vicario and Lindroth (2002) predicts
that this maximum indeed has its origin in a clear and isolated S-matrix pole, i.e. a Feshbach
resonance. Our time-delay analysis fully confirms this latter conclusion, and we identify that
feature as the 2p3s3p resonance, with width 33.8 meV. As seen in table 2, our width closely
agrees with the value from the complex rotation calculation. This resonance decays almost
exclusively to the 2s2p 3P and 2s3s 3S channels (see table 3), and relative decay probabilities
agree well with the channel cross sections presented by Zhou et al (2001a). However, the fact
that this resonance is placed just above the 2s3s 3S threshold leads the authors to the wrong
conclusion that it is a threshold maximum.

3.4. Total cross sections and comparison with experiment

Recently, a high-resolution K-shell photodetachment measurement of the 1s2s2p 4Po state of
He− giving rise to He+ was performed (Berrah et al 2002) in the photon energy range 38–
44 eV using a merged synchrotron VUV photon–ion beam technique. In order to compare
these experimental results to theory, it is necessary to extract the He+-production cross sections
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Figure 4. Calculated photodetachment cross sections to the He− 4D final states. Notation is the
same as in figure 1.

from the total calculated photodetachment cross section. This can be done by subtracting from
the total photodetachment those channels that do not result in He+ production. These are
the 1snl channels, and also the 2p2 3P channel, which is metastable against autoionization
and therefore decays primarily by radiation to the bound states of neutral He. The other
channels are autoionizing states of He that decay almost exclusively via autoionization to He+

(or radiatively cascade to other autoionizing states, for example, the 2p3p 3P state). In figure 5,
we compare our photodetachment cross section giving rise to He+ with the experimental data.
For the sake of comparison, we have shifted the experimental data by −140 meV to be aligned
with our 2s2p 3Po threshold (the same shift has been done also by Sanz-Vicario and Lindroth
(2002), indicating that the experimental energy scale may not have been calibrated precisely).
The experimental results were normalized to the calculation of Zhou et al (2001a) at 42 eV.

The experimental data show a peak of about 15 Mb at 38.8 eV, just above the first 1s
detachment threshold (He 2s2p 3Po). As seen from figure 5(a), this first threshold maximum
shows the poorest agreement between experimental and theoretical cross sections—theory is
about a factor of two larger than experiment here. Although our first maximum is slightly less
than that of Zhou et al (2001a), there is still large disagreement with experiment. The cross
section in the first maximum is defined almost exclusively by the He− (2s2p 3Po)kp channel. It
was suggested by Sanz-Vicario and Lindroth (2002) that this channel does not really participate
in the production of He+, and it is quenched by other mechanisms yet unknown. The only
important approximation in the calculations is the omission of the higher members of the set
of singly excited and doubly excited final states of the neutral atom, along with the continua
associated with each of them. As will be shown in the next section, additional inclusion of
target states (the singly excited 1s4l, 1s5l states as well as the doubly excited 3l3l ′ states)
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Figure 5. Total photodetachment cross section to He− from the metastable 1s2s2p 4Po state. (a)
Solid curve—present R-matrix calculations, circles—experimental points from Berrah et al (2002).
In the region of the first threshold peak comparison is given with R-matrix calculation of Zhou et al
(2001a), dashed curve, and complex rotation CI calculation of Sanz-Vicario and Lindroth (2002),
dotted curve. (b) Comparison with high resolution experimental data in the high energy region;
solid curve—present photodetachment cross sections convoluted with a 70 meV FWHM Gaussian.

does not change considerably the background photodetachment cross sections, including their
values in the first maximum. Inclusion of the continuum target states 2skl and 2pkl is difficult
to perform in the framework of the R-matrix method. However, the complex rotation method
of Sanz-Vicario and Lindroth (2002) includes such states to some extent, though it is difficult
to define the correspondence between the CC expansions used in the R-matrix method and
the CI expansion used in the complex rotation method. As seen in figures 1–4, the complex
rotation cross sections are very close to our results for the first maximum. We can conclude
that the disagreement with experiment is not caused by the truncation of the CC expansion.
A similar discrepancy was observed for Li− (Kjeldsen et al 2001, Berrah et al 2001), and
it remains an unsolved problem. However, it should be noted that the Li− photodetachment
initial and final states have fully different configurational structure from the He− case, so the
reason for the discrepancy in this case may be different.

At higher energies, experimental data show a few prominent resonances with positions
that correlate well with the calculated resonance structure. A more detailed comparison
with high resolution experimental data from 42.7 to 44.2 eV is presented in figure 5(b).
Experimental resolution appears to lower and broaden the resonance features relative to theory.
In order to perform the quantitative comparison with experiment, we convoluted the calculated
cross section with a full-width at half-maximum (FWHM) Gaussian width corresponding
to experimental resolution (70 meV). We now see excellent agreement between theory and
experiment, both in position and magnitude of the resonance features. According to our
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analysis, both dominant maxima at 43.08 and 43.44 eV are due to resonances. The first peak
is due to the 2p3s3p 4D resonance, and the second is due to the 2p3s3p 4P resonance. Our
analysis contradicts the conclusion of Berrah et al (2002) that the first maximum is the threshold
maximum.

3.5. Convergence of the close coupling expansion

The most important approximation in the CC calculations is the omission of higher target states,
specifically, in the present case, the singly excited and doubly excited states of neutral He.
One might expect that this omission mainly affects the higher energy photodetachment cross
sections. However, due to polarization effects, omission of higher members could sometimes
lead to a reduction of cross sections at small energies. In order to examine the convergence
of the CC expansion in the present case, we have carried out additional calculations with
both singly excited (1s4l, 1s5l) and doubly excited (3l3l ′) states of neutral He. The resulting
CC expansion contains the 31 target states (31CC approximation). Comparison of the partial
photodetachment cross sections obtained in the 17- and 31-state approximations is shown in
figure 6. We see very close agreement between these cross sections, especially the background
cross sections, including the magnitude and threshold maxima. We conclude that the difference
between theoretical and experiment data in the first threshold peak is not caused by truncation
of the CC expansion.

Increasing the number of target states leads to considerable changes in the resonance
parameters. Table 3 compares the energies, widths and decay modes obtained from the two
approximations. For each resonance, the first line presents results of the 31CC approximation,
and the second line those from the 17CC approximation. It is difficult to give assignments
for resonances based only on the R-matrix calculations, so we simply number resonances
according to their energies. An increase in the number of target states leads to the appearance
of new resonances, as well to changes in their parameters. The parameters of wide and strong
resonances, 4P(1–3) and 4D(1), are relatively stable, whereas the narrow resonances, 4S(1)
and 4P(4), are very sensitive to the approximation. In general, we may conclude a rather slow
convergence of the CC expansion concerning the resonance parameters.

As expected, the 31CC calculations also reveal noticeable resonance structure in the region
of the 3l3l ′ target states. Two broad resonances were detected in the 4S partial wave. For the 4P
partial wave we detected only one wide resonance, 3s3p2 4P(5), with energy and width in close
agreement with those predicted by Chung (2001) using the saddle-point complex rotation
method. For the 4D partial wave, we detected two very broad resonances below the 3s3p 3Po

excitation threshold, whereas the peak above this target state is the threshold maximum.

4. Summary

We have presented theoretical cross section results for photodetachment of He− in the region
of the 1s excitation threshold. The calculations have been performed with a new extended
version of the R-matrix method (Zatsarinny and Froese Fischer 2000) where a B-spline
basis is employed for the representation of the continuum functions. Another distinguishing
feature of the present R-matrix calculation is the use of non-orthogonal orbitals both for the
construction of target wavefunctions and for the representation of scattering functions. The
present calculations were undertaken in order to sort out the large discrepancies between
results of previous calculations by Xi and Froese Fischer (1999) and Zhou et al (2001a). All
calculations have been performed with different methods, but include, in principle, the same
level of correlation corrections. Our calculations confirm the theoretical results of Zhou et al
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Figure 6. Comparison of the partial photodetachment cross sections obtained in the 17CC (dotted
curve) and 31CC (solid curve) approximations for the 4S, 4P and 4D final states.

(2001a). At the same time, the method used by Xi and Froese Fischer (1999), direct solution
of the CC equations in the B-spline basis, gives excellent results in the low energy region (Xi
and Froese Fischer 1996).

We obtained good agreement with the experimental cross section of Berrah et al (2002),
especially in the higher energy region, where the observed resonance structure is fully
interpreted from the present calculations. The remaining discrepancy is in the region of the
first threshold maximum, where the theoretical cross section exceeds the experimental value
by a factor of two. In order to resolve this discrepancy, we carried out CC calculations with
additional target states. However, the inclusion of additional bound, as well as autoionizing,
target states does not lead to significant changes in the cross sections near the first threshold
maximum. This may be due to our omission of the 2lkl continuum target states. However, the
complex scaling method used by Sanz-Vicario and Lindroth (2002) includes such target states,
but still gives a very close result to ours for the threshold maximum. Additional experimental
and theoretical studies are needed to resolve this existing discrepancy.

In contrast to the background cross section, the resonance structure was found to be
much more sensitive to the approximation used. It is interesting to note that many resonance
features were given fully different classifications in the different calculations. We believe that
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the present calculations are more sophisticated in this respect and adequately reproduce the
observed resonance structure. In all, we detected and found energies and widths for 15 triply
excited states in He− in the region of the 2l3l ′ and 3l3l ′ excitation thresholds.
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